ENKO-POMIAR Sp. z o.o

System próbkowania

Instrukcja obsługi i instalacji

Gliwice 12.2014

Spis treści

	1.1	Ws	tęp	4
	1.2	Zas	tosowanie	4
	1.3	Tra	nsport	5
	1.4	Wy	posażenie	5
2	Ob	oudov	va Monoblock	7
	2.1	Spe	ecyfikacja techniczna	7
	2.2	Wy	miary i podzespoły	8
	2.3	Мо	ntaż	9
	2.3	3.1	Część mechaniczna::	9
	2.3	3.2	Elektryka:	9
	2.4	Ko	nserwacja 1	2
	2.5	Dia	gnozowanie1	2
3	Us	tawie	enia programu 1	3
	3.1	Tec	chnical specifications 1	3
	3.2	Opi	is działania1	.4
	3.2	2.1	Próbkowanie1	4
	3.2	2.2	System dystrybucji (opcjonalnie) 1	4
	3.2	2.3	Dane z cyklu pomiarowego (opcja) 1	.4
	3.2	2.4	Funkcja alarmu (opcjonalnie dla próbników In Line) 1	.4
	3.2	2.5	Próbkowanie według zaprogramowanych okresów1	5
	3.2	2.6	Koniec próbkowania po xx pojemnikach 1	5
	3.3	Ste	rowanie ręczne (opcja) 1	5
	3.4	Wy	świetlacz 1	5
	3.5	Zm	iana ustawień próbopobieraka (JAZZ CPU) 1	5
	3.5	5.1	Czas i data 1	5
	3.5	5.2	Zmiana ustawień próbkowania 1	.6

	3.5	.3 Ustawienia próbki	17
	3.5	4 Ustawienia dystrybutora	17
	3.5	.5 Ustawienia programu	18
	3.5	.6 Ustawienia wejść i wyjść	18
	3.5	7 Ustawienia chłodziarki	19
4	Pró	bnik próżniowy	20
	4.1	Specyfikacja techniczna	20
	4.2	Wymiary i budowa	20
	4.3	Zasada działania	21
	4.4	Instrukcje montażu	21
	4.5	Zmiana objętości dozowania	22
	4.6	Konserwacja próbnika próżniowego	22
	4.7	Diagnozowanie	24
5	Pró	bnik perystaltyczny	25
	5.1	Specyfikacja techniczna	25
	5.2	Wymiary i budowa	25
	5.3	Zasada działania	26
	5.4	Instrukcje montażu	27
	5.5	Zmiana objętości dozowania	27
	5.6	Konserwacja	27
6	ILS	"Guillotine" G05	29
	6.1	Specyfikacja techniczna	29
	6.2	Wymiary i obudowa	29
	6.3	Zasada działania	30
	6.4	Instrukcja montażu	30
	6.5	Zmiana objętości próbki	31
	6.6	Konserwacja	31

6.7	Diagnozowanie usterek	32
Załaczni	ik 1	33
Załaczni	ik 2	34

1.1 Wstęp

Instrukcja obsługi przeznaczona jest dla instalatorów oraz użytkowników automatycznych systemów poboru prób. Zaznajamia ona użytkownika z zasadami montażu oraz eksploatacji urządzenia, a także z jego konstrukcją, zasadą działania oraz z podstawowymi parametrami technicznymi.

Prosimy o dokładne zapoznanie się z niniejszą instrukcją przed zainstalowaniem urządzenia w celu zapewnienia jego prawidłowej instalacji oraz użytkowania zgodnego z przeznaczeniem, a także przestrzeganie zawartych w niej wskazówek eksploatacyjnych.

Producent zastrzega sobie możliwość zmian w konstrukcji wyrobu bez powiadamiania.

Przed rozpoczęciem użytkowania:

Przeczytaj instrukcję obsługi przed podłączeniem urządzenia do prądu bądź montażem.

W przypadku niewłaściwego lub niezgodnego z instrukcją użytkowania wszelkie formy gwarancji zostaną utracone. Użytkownik musi zapoznać z instrukcją obsługi oraz zagrożeniami związanymi z użytkowaniem.

Montaż oraz regulacja parametrów próbkowania powinny być przeprowadzane przez odpowiednio wykwalifikowany personel.

Sprawdź czy sprzęt został dostarczony bez żadnych uszkodzeń. W razie uszkodzenia od razu skontaktuj się ze swoim dostawcą i nie rozpoczynaj montażu urządzenia. Sprzęt został przetestowany w fabryce. Do wykonywania wszelkich prac konserwacyjnych lub naprawy w okresie gwarancyjnym uprawniony jest wyłącznie serwis ENKO. Każdy sprzęt dostarczany do producenta musi być odpowiednio wyczyszczony, wysterylizowany oraz transportowany w odpowiedniej obudowie by zapobiec jakimkolwiek sytuacją zagrażającym zdrowiu. W przypadku dostawy bez deklaracji pochodzenia i bezpieczeństwa sprzęt nie zostanie przyjęty. W przypadku konieczności przeprowadzenia dodatkowego czyszczenia urządzenia będzie wiązało się to z dodatkową opłatą lub odmową jego przyjęcia. Gwarancja zostanie unieważniona jeśli w urządzenia zostaną dokonane zmiany mechaniczne, elektroniczne lub w oprogramowaniu przez osoby nieupoważnione. Szczegółowe warunki gwarancji zostały przedstawione w karcie gwarancyjnej urządzenia.

Podstawowy okres gwarancyjny:

12 miesięcy od dostawy na sprzęt zamontowany zgodnie ze specyfikacją, 150 próbek i 24 włączenia dystrybutora dziennie w dobrze przewietrzonym i nieagresywnym otoczeniu.

48 miesięcy na nieprzenośne termoplastyczne obudowy.

1.2 Zastosowanie

Uwaga!

Niewłaściwe stosowanie może doprowadzić do zniszczenia urządzenia bądź jego otoczenia, które nie jest objęte gwarancją.

Warunki otoczenia:

- Temperatura $0^{\circ}C (\text{opcja-}25^{\circ}C) / + 40^{\circ}C (\text{opcja}+55^{\circ}C)$
- Dobrze przewietrzona przestrzeń
- Radzimy nie umieszczać obudowy w nasłonecznionym miejscu z uwagi na odpowiednią wydajność chłodzenia. Instalacje położone w nasłonecznionym miejscu narażone są na mniejszą wydajność związaną ze słabszym chłodzeniem w wysokiej temperaturze otoczenia.

Użytkowanie w środowisku o zagrożeniu wybuchem jest zakazane o ile wytyczne opisane w instrukcji bądź na urządzeniu mówią inaczej!

<u>Środowisko próbki:</u>

- Wolne od ciał stałych
- Wolne od wtrąceń powietrza
- Temperatura: +0.1°C / +50°C. (wyższa opcjonalnie)
- Minimalne przewodnictwo: 50µS (tylko dla instalacji próżniowych)

1.3 Transport

Urządzenia wyposażone w chłodziarkę powinny być przewożone w pozycji stojącej.

Ze względu na wymogi gwarancyjne urządzenia powinny być transportowane w oryginalnych opakowaniach na dostarczonych paletach.

1.4 Wyposażenie

Systemy próbkowania dostępne są w kilku rodzajach obudów, tworzywowych, i standardowo wyposażone są w sterownik JAZZ. Systemy próbkowania mogą być modyfikowane w zależności od potrzeb oraz okoliczności według NEN 660-1 & ISO 5667-2&10.

Standardowe obudowy:

- *Monoblock*: Wersja ruchoma na życzenie wyposażona w koła oraz uchwyty do przenoszenia,
- *Industrial*: Model wyposażony w jednostkę Plug-In-Cool. Większa komora na podzespoły elektroniczne tj. rejestratory / elektronika pomiarowa / etc.
- *CarryBox*: Przenośna obudowa na próbniki próżniowe bez chłodziarki.
- *SystemBox*: Obudowa z możliwością montażu przepływomierzy, próbników, sprężarek powietrza etc. Kompatybilny z obudową Monoblok.
- *Industrial SystemBox*: Obudowa z możliwością montażu przepływomierzy, próbników, kompresorów powietrza, instalacji CIP, szaf rozdzielacza etc. Kompatybilny obudową Industrial.

CPU's:

- JAZZ: Zawiera podstawowe funkcje.
- Dostępne inne sterowniki na specjalne zamówienie.

Zasada próbkowania:

- pompa próżniowa (VS)
- •
- pompa perystaltyczna (PS) pobór prób z instalacji ciśnieniowych (ILS) •

2 Obudowa Monoblock

2.1 Specyfikacja techniczna

Monoblock			
Zasilanie elektryczne:			
Napiecie zasilania/prad	230V AC +5% / 2 5 A / 50 Hz		
• Moc	+400 W		
Obudowa:	Zielona (inne kolory opcionalnie)		
Wysokość	• $1100 \text{ mm} + 2\%$		
Szerokość	• $600 \text{ mm} + 2\%$		
Głebokość	• $600 \text{ mm} \pm 2\%$		
Materiał obudowy	 Tworzywo LI DPF (nodwóina ściana) 		
Materiał obudowy	• Poliweglan		
Materiał tylnej nłyty	• SS 316 / PF		
Izolacia	• $40 \div 60 \text{ mm PUR nianka}$		
Warunki otoczenia:			
Stopień ochrony	• IP 54/ agregat chłodzący IP23		
Temperatura otoczenia	• If $34/$ agregat emodzący if 25 • $0/+40$ °C		
Nasłonecznienie	• Opcia $_{-25} / _{+40} ^{\circ}\text{C}$		
Strefa Ex	• Opcja $-25 / +55 ^{\circ}\text{C}$		
	 Opcja -257 +55° C Dozwolone unikać jeśli możliwe 		
	 Zakaz w strefie zagrożenia wybuchem 		
Charakterystyka chłodzenia:	Zakaz w strene zagrożenia wybuchem		
• Zasada	Wymuszony 24VDC wentylator		
	zabezpieczony przed wilgocia		
Środek chłodzący	• R134 A		
 Barownik spiralny 	• Efcon [®] DVS 216 / V/Λ		
• Kompresor	Dowlekany (Electrolux)		
Kompresor Kondonsator	Dowlekany		
Temperatura abladzenia	• 10° C $\pm \pm 5^{\circ}$ C gradnia z NEN6600 ISO 5667		
Cykl rozmrażania	• Automatyczny (ustawiony na starowniku)		
• Grzałka	• Automatyczny (ustawiony na sterowniku) • 24 VDC \div 25W SS spiralpa (opcia)		
Pojemnik próbki:	DE histy (opcia szkło)		
• boz dystrybutora	r = - 0 and $r = 0$ and $r = 0$ and $r = 0$		
• z beznośrednim	• $0u \ge 1u0 \exists 01$ • $2v251 / Av13 51 / 12v21 / 2Av11$		
- z bezpostednim dustrubutorem	- 2x23 1/ 4x13,3 1/ 12x2 1/ 24x1 1		
uysu youtorem			

<i>Carrybox</i> (próbnik próżniowy)		
Zasilanie elektryczne:		
Napięcie zasilania / prąd	230V AC ±5% / 1 A / 50 Hz	
Moc	$\pm 100 \text{ W}$	
Obudowa	Thermoplastic Green model podręczny	
Wysokość	412 mm± 2%	
Szerokość	$340 \text{ mm} \pm 2\%$	
Głębokość	$302 \text{ mm} \pm 2\%$	
Waga	$\pm 9 \text{ kg}$	
Materiał	Tworzywo LLDPE	
Materiał tylnej płyty	Aluminium	
Warunki otoczenia		
Stopień ochrony	IP 41	
Temperatura otoczenia	$0^{\rm o}{\rm C}$ / +40°C	
Nasłonecznienie	Dozwolone, unikać jeśli możliwe	
Strefa Ex	Zakaz w strefie zagrożenia wybuchem	

2.2 Wymiary i podzespoły

Obudowa Monoblock

Rys. 2.2a

- A) Wyłącznik główny (lewostronny w standardzie)
- B) Wejście węża doprowadzającego próbkę z siłownika gilotynowego
- C) Pokrywa komory kompresora
- D) Kanał kablowy
- E) Uchwyty montujące
- F) Panel sterujący
- G) Dozownik próżniowy (nie występuje w układach z systemem pobierania ILS)
- H) Dystrybutor z uchwytem
- I) Butelki na próbki
- J) Komora chłodnicza

Obudowa Carry-Box

Rys. 2.2b

- A) Uchwyt
- B) Panel sterowania
- C) Dozownik próżniowy (próbnik)

- D) Zawór spustowy
- E) Pokrywka obudowy
- F) Złącza sygnałowe
- G) Napięcie zasilania
- H) Uchwyty mocujące

2.3 Montaż

2.3.1 Część mechaniczna::

Przed montażem obudowy określ gdzie jest umiejscowiony próbnik (w razie systemu ILS). Dzięki temu możesz sprawdzić czy przewód próbki (od próbnika do obudowy) ma stopniowe nachylenie.

Obudowa Monoblock

Umieść pobierak na zwartym poziomym podłożu (poziomnica wodna) i przytwierdź go za pomocą dwóch dostarczonych wsporników mocujących SS, śrub i zaślepek. UWAGA! Mocując śruby M6 nie dokręcaj ich zbyt mocno do obudowy.

Pod obudową znajduje się otwór wylotowy skroplin. Otwór posiada łącznik typu push-in na 8mm przewody rurowe (Rys.2.3a).

Rys. 2.3a

Obudowa Carry-Box

Tego typu obudowa jest dostępna tylko dla próbników próżniowych.

2.3.2 Elektryka:

Montując obudowę zastosuj się do poniższych podpunktów:

- Zdejmij pokrywę ochronną (B rys.2.3b) komory kompresora odkręcając cztery śruby. W razie potrzeby zdemontuj złączkę oraz kabel ochronny z wentylatora aby uzyskać więcej miejsca. Poluzuj dwie nakrętki zaciskowe na panelu sterującym (A rys.2.3b). Odłącz wtyczki od panelu sterującego w celu demontażu.
- Poprowadź kabel przyłączeniowy przez kanał kablowy A, biegnący wewnątrz obudowy.
- Poprowadź kabel przez dławiki B (rys.2.3c) w bocznym panelu pomiędzy komorą kompresora a komorą instalacji elektronicznej. Użyte kable muszą być wystarczająco długie, aby dosięgnąć do listwy zaciskowej.

Rys. 2.3c

<u>Złącza terminala</u>

Rys. 2.3d

Zasilanie

Podłącz kabel zasilania (230V AC/50Hz) do styków 1 (L), 2 (N) oraz 3 (PE) na listwie zaciskowej (rys.2.3d).

Wejście impulsowe

Wejście bezpotencjałowe (zaciski 4 i 5), uruchamianie próbkowania zewnętrznymi impulsami. Uwaga: maksymalna częstotliwość wejścia impulsowego < 1 Hz. Długość impulsu ± 100 ms.

Wejście cyfrowe D1 i D2

Wejścia bezpotencjałowe (zaciski 6 i 7). Używając tych wejść można zewnętrznym sygnałem aktywować pobór próbki i zmianę dystrybutora. Zobacz pkt. 3.5.5.

Wejście analogowe 4 - 20 mA

Wejście prądowe (zaciski 8 i 9). Używając tego wejścia można podłączyć przepływomierz.

Wyjście cyfrowe Output 1 i Otput 2

Alarm. Wyjście bezpotencjałowe (zaciski 10 i 11).

Zobacz pkt. 3.5.5.

Rys.2.3e

Złączki input / output (opcjonalnie)

Opcjonalnie dla systemów próbkowania dostępne są podłączenia za pomocą zewnętrznych złączy wtykowych. Podłącz wtyki zgodnie z rys.2.3d. Umieszczaj wtyczki z wlotami kablowymi skierowany w dół, żeby uniknąć gromadzenia się wilgoci wewnątrz wtyczki.

Zasilanie 230VAC (wtyczka męska)

- Pin 1 = L 230VAC 50Hz
- Pin 2 = N 230VAC 50Hz
- Pin PE= GND

Zasilanie 24VDC (wtyczka żeńska)

- Pin 1 = +24V DC
- Pin 2 = -24V DC (gnd)

Wejście analogowe (wtyczka żeńska)

- Pin 1 = (+) 4-20mA
- Pin 2 = (-) 4-20mA
- Pin 3 = styk bezpotencjałowy
- PE= styk bezpotencjałowy

Wejście dystrybutora (wtyczka żeńska)

• Pen 3 & 2= styk bezpotencjałowy

Wyjście próbnika (wtyczka żeńska)

- Pen 1= +24VDC próbnik
- Pen 2= -24VDC próbnik
- Pen 3= sygnał reakcji próbnika (24VDC impuls) opcjonalnie

Wyjście alarmowe (wtyczka męska)

• Pen 1 & 2= Wyjście alarmowe (styk bezpotencjałowy)

Wyjście zasilania 230VAC (wtyczka żeńska)

- Pin 1 = L 230VAC 50Hz
- Pin 2 = N 230VAC 50Hz
- Pin PE= GND

2.4 Konserwacja

Uwaga! Przed konserwacją lub sprawdzeniem, wyłączyć zasilanie, doprowadzenie skompresowanego powietrza oraz usunąć ciśnienie medium.

Konserwacja oraz naprawy powinny być wykonane przez wykwalifikowany personel.

Unikać bezpośredniego kontaktu z ściekami. Należy używać rękawic ochronnych.

Częstotliwość konserwacji zależy od rodzaju ścieków. Należy czyścić regularnie (lub wymienić w razie konieczności) wszystkie części, które mają kontakt z pobieranym do próbek medium.

Należy sprawdzić czy komora kompresora jest czysta, czy skraplacz z wentylatorem nie jest zanieczyszczony kurzem. Zanieczyszczenia najlepiej usunąć za pomocą odkurzacza lub użyć wilgotnej ścierki, unikając części elektrycznych.

Raz w roku sprawdź czy wszystkie śruby w instalacji elektronicznej są prawidłowo dokręcone.

2.5 Diagnozowanie

Problem	Diagnoza	Rozwiązanie
Chłodziarka oszrania komore	Nieprawidłowe ustawienia sterownika	Sprawdź ustawienia (pkt.1.7)
nomory	Drzwi nie są zamknięte	
		Zamknąć drzwi
	Nieszczelność drzwi – dostaje się	
	powietrze	Sprawdzić uszczelkę gumową w
		drzwiach
Chłodziarka nie chłodzi	Nie działa wentylator skraplacza w	Sprawdź ustawienia (pkt.1.7)
	komorze kompresora lub wentylator	
	komory chłodniczej	Sprawdzić / wymienić wentylator
Dystrybutor nie obraca się	Nieprawidłowe ustawienia	Sprawdź ustawienia (pkt.1.7)
prawidłowo	dystrybutora	
	Śruba silniczka jest poluzowana	Dokręć śrubę
	Wąż silikonowy nie obraca się	Skróć wąż silikonowy
	swobodnie podczas rotacji	

3 Ustawienia programu

UWAGA! Nieprawidłowe ustawienia mogą prowadzić do uszkodzenia osprzętu.

Regulacja ustawień parametrów powinna być wykonana przez wykwalifikowany personel.

3.1 Technical specifications

Parametr	Wartość
Wyświetlacz	2 linie po 16 znaków,
	Licznik max 300000,00m3 (autom. Reset)
Klawiatura	16 przycisków
I/O hardware	8 wejść cyfrowych, 4 wejścia analogowe, 11 wyjść przekaźnikowych
Podstawowe operacje	Przycisk:
	Weź próbkę (Manual sample); Zmień butelkę (Next bottle); Reset
Wejścia	Impulsowe, prądowe (4-20mA), 2xwejście cyfrowe (dowolnie konfigurowalne)
Wyjścia	2x24VDC wyjście aktywne(dowolnie konfigurowalne)
Pobór próbki	ILS / Próżniowo / Perystaltycznie
Program	Objętość /Czas / Proporcjonalnie
Cykl pobór próbki	0,01 – 250,00 m3 / próba
	2 – 250 min / próba
Ilość błędnych prób	0 – 999
Objętość próbki	1 – 9999 ml
Ustawienia:	
pompa próżniowa	Czas przedmuchiwania 1- 99 s
pompa perystaltyczna	Max czas ssania 1- 99 s
	Czas dozowania 1 – 99 s
Ustawienia ILS	Czas aktywacji 1 – 99 sec
Obrót, kolejna butelka	00:00 - 23:59
	Dzień (MTWTFSS)
Cykl obrotu	00:00:00 – 99:59:59 (HH:MM:SS)
Ilość butelek	1 – 24 pojemniki, objętość 0,01 – 99,991
Ochrona przed	Następna butelka; Zatrzymanie próbkowania
przepełnieniem	
Ustawienia	Próbka w zależności od daty i godziny
	Start (0=wyłączone)
	Stop (0= wyłączone)
Stop po xx butelkach	0-99 (0=wyłączone)
Hasło	TAK, (1-9999)
Czas i data	Ustawialne (brak zmiany czasu z zimowego na letni)
Ustawienia chłodziarki	$On = 1-99^{\circ}C, Off = 1-99^{\circ}C$
Odmrażanie	Odstępy czasowe 1-99 godzin, czas trwania 1-99 min
Offset	-99 – 99 °C
Czas odmrażania	0-99 godzin (0= kontynuuj chłodzenie)
Eco cool	On/Off (włączony/wyłączony)
Sygnał z przepływomierza	Impuls / Prąd / Impuls + Prąd
Wejście impulsowe	0,01 – 100,00 m3
Wejście analogowe	20mA = 1,0 - 360,0 m3/h
Wejścia. Opcje	Program włączony/wyłączony; Start program; Stop program; Weź próbkę;
	Następna butelka; Włączona chłodziarka
Wyjścia. Opcje	Alarm; Alarm próbkowania; Próbkowanie; Próbkowanie OK; Przekroczona
	temperatura; Błąd probki; 1m3/Impuls; 0,1 m3/Impuls; 0,01 m3/Impuls; Pełna
	butelka

3.2 Opis działania

3.2.1 Próbkowanie

System próbkowania może wykonywać próbki na trzech różnych zasadach:

- Próbkowanie ręczne poprzez wciśnięcie guzika na panelu sterowania
 - Próbkowanie automatyczne zaprogramowane na Czasowe próbkowanie. Objetościowe próbkowanie (wejście impulsowe) lub próbkowanie czasowe (próbkowania proporcionalne według czasu po uaktywnieniu wejścia impulsowego)
 - Próbkowanie automatyczne (start / stop) według daty

3.2.2 System dystrybucji (opcjonalnie)

Dystrybutor zapewnia poprawną dystrybucję próbek do różnych pojemników.

Systemy z wielobutelkowym zasobnikiem na próbki zaopatrzone są w bezpośredni dystrybutor. Dystrybutor przesuwa wąż od dozownika (zgodnie z ruchem wskazówek zegara) nad pojemnik. Jest to działanie automatyczne (poprzez zaprogramowanie) bądź ręczne (poprzez wciśnięcie guzika). Uruchomienie dystrybutora może być zaprogramowane na:

- Czas ustalony (np. ustaw na 10:00) & dni (3 razy dziennie)
- Odstępy czasowe (np. co 2 godziny), ten tryb włącza się po zaprogramowaniu czasu ustalonego.
- Liczba pobranych próbek, zależne od objętości próbki oraz pojemnika (ochrona przed przepełnieniem)*

* Po zakończeniu cyklu, licznik i sumator próbki są resetowane. Wartości te zachowywane są w sterowniku JAZZ.

3.2.3 Dane z cyklu pomiarowego (opcja)

Dane z wyświetlacza (licznika przepływu, m3 oraz ilości pobranych próbek) są automatyczne kasowane po zakończeniu danego cyklu (po zmianie na kolejną butelkę). Wartości te przechowywane są w sterowniku wraz z datą i godziną oraz średnią temperaturą. Sterownik umożliwia zachowanie wartości z 24 cykli.

3.2.4 Funkcja alarmu (opcjonalnie dla próbników In Line)

Po wielokrotnej awarii próbkowania bądź awarii zasilania, przekaźnik wyjścia alarmowego systemu próbkowania zamyka się.

Kiedy cykl próbkowania nie jest ukończony CPU rejestruje błąd próbki. Po ustalonej liczbie błędów próbki (wartość domyślna = 3) system zaprzestaje pobierać próbek automatycznie i przełącza się w stan alarmowy. Alarm jest sygnalizowany na 2 sposoby:

- Przez wyjście Alarm output
- Wyświetlacz pokazuje obecny status alarmowy

Wciśnij przycisk reset na przodzie obudowy żeby zresetować alarm. Po zresetowaniu system zacznie próbkować zgodnie z programem.

3.2.5 Próbkowanie według zaprogramowanych okresów

Aktywując to ustawienie możemy rozpocząć i zakończyć automatyczne próbkowanie w ustalonym dniu o czasie. W ten sposób system może być zaprogramowany (patrz pkt 3.5.11) tylko do pobierania próbek.

3.2.6 Koniec próbkowania po xx pojemnikach

Kiedy funkcja jest włączona, próbopobierak przestaje próbkować po ustalonej liczbie pojemników. Po naciśnięciu przycisku reset, system ponownie zaczyna próbkować dopóki nie osiągnie takiej samej liczby próbek. patrz pkt 3.5.12

3.3 Sterowanie ręczne (opcja)

System próbkowania może być sterowany ręcznie za pomocą 3 przycisków na przodzie obudowy. Sterowanie ręczne dostępne jest jedynie gdy nie uruchomiono menu.

- Manual Sample, naciśnij aby pobrać próbkę ręcznie
- **Next Bottle**, naciśnij aby przesunąć dystrybutor do następnego pojemnika. (3 s czas zwłoki)
- **Reset alarm**, jeśli alarm został aktywowany (za dużo błędów próbki), wciskając przycisk, alarm się wyłączy.

3.4 Wyświetlacz

Wskazanie zmienia się co 5 s, pomiędzy:

Total	Licznik (m3), brak możliwości resetowania
00000,00m3	Status programu
Cycle	Licznik (m3) dla danego cyklu, kasowany po zmianie butelki.
00000,00m3	Ilość pobranych próbek w cyklu, kasowana po zmianie butelki.
16:55	Godzina oraz przepływ (m3/h)
0,0m3/h	Data oraz temperatura (°C)
16:55 0,0m3/h	By przejść pomiędzy wskazaniami naciśnij ▼

3.5 Zmiana ustawień próbopobieraka (JAZZ CPU)

Zmiana ustawień wymaga wejścia do menu jednostki centralnej JAZZ.

3.5.1 Czas i data

- W celu wejścia do menu naciśnij Enter
- Wpisz hasło (domyślnie 5555) i naciśnij Enter
- Poprzez dwukrotne naciśnięcie przycisku ► wybierz program settings
- Naciśnij **Enter** by zatwierdzić
- Przejdź ▼ do okna DATE/Time
- Wprowadź datę i naciśnij Enter

- Wprowadź godzinę i naciśnij **Enter**
- By wrócić do okna głównego naciśnij **2x ESC**

3.5.2 Zmiana ustawień próbkowania

Drzewo menu załączone w Załączniku 1.

- W celu wejścia do menu naciśnij Enter
- Wpisz hasło (domyślnie 5555) i naciśnij Enter
- Za pomocą przycisków ► lub ◄ wybierz submenu
- Przyciski ▼lub ▲ pozwalają na wybór parametrów
- Naciśnij Enter by zatwierdzić(◀ lub ► pozwala na wybór kolejnych opcji)
- By zmienić wartość parametru użyj klawiatury numerycznej
- Zmiany zatwierdź przyciskiem Enter

Submenu	Parametry
Sample settings	Pozwala na ustawienie parametrów próbkowania oraz parametrów związanych z próbką.
	Sample by, Sample Interval, Error Sample Max, Sample Volume, Purge time(VS/PS), Max. suction time(VS/PS), Dose(VS/PS), activation time(ILS)
Distributor settings	Pozwala na ustawienie parametrów butelek.
	Turn Time, Turn Day, Turn Interval, Container Config., Overflow protection,
Program settings	Ustawienia programu.
	Start date/Time, Stop date/time, Stop After xx full containers, Change date/time, Change password
Input/output settings	Ustawienia wyjść i wejść.
	Flowsignal, Pulse Value, Current 20mA value, Input 1&2 config, Output 1&2 config
Cool Unit Settings	Ustawienia chłodziarki.
	Setpoints Cool unit, Defrost cycle, Temperature offset, Defrost Time, Eco Cool settings.

3.5.3 Ustawienia próbki

Wybierz submenu Sample Settings i naciśnij Enter.

Po wybraniu odpowiedniego parametru naciśnij Enter by zmienić jego wartość.

Przykłady w załączniku 2.

Parametr	Opis
Sample by	Za pomocą ◀ lub ► wybierz sposób próbkowania:
	Volume Interval: probka co xxx,xx m3 (pobleranie probek
	aktywowane impulsem z wejścia impulsowego lub
	pradowego)
	Time Interval: probka co xx minut
	Batch : probka co xx minut probek aktywowane impulsem z
	wejścia impulsowego
Sample interval	Wprowadź żądaną wartość w m3 lub min
Error sample max	Wprowadź ilość błędnych próbek po których ma zostać
	włączony alarm
Sample volume	Wprowadź objętość próbki
Purge, Max suction,	Purge time: czas przedmuchiwania węża przed pobraniem
dose(tylko VS),	próbki
activation time(tylko	Max suction time: maksymalny czas potrzebny do
ILS)	osiągnięcia właściwego poziomu pobieranej cieczy. (Zależne
	do długości węża.)
	Dose time: czas dozowania próbki. Activation time: czas
	aktywacji gilotyny ILS.

3.5.4 Ustawienia dystrybutora

Wybierz submenu **Distributor Settings** i naciśnij **Enter**.

Po wybraniu odpowiedniego parametru naciśnij Enter by zmienić jego wartość.

Przykłady w załączniku 2.

Parametr	Opis
Turn Time	Wprowadź godzinę, o której ma nastąpić zmiana butelki.
Turn Day	Pozwala na wprowadzenie dnia tygodnia , w którym ma nastąpić zmiana butelki. M(Poniedziałek)T(Wtorek)itd. (1 – włączony; 0 – wyłączony)
Turn Interval	Wprowadź okres z jakim ma następować zmiana butelki. (0=wyłączone)
Container Config.	Wprowadź ilość i pojemność butelek.
Overflow protect,	Next container: po przekroczeniu objętości pojemnika dystrybutor przejdzie do następnej butelki. Stop sampling: po przekroczeniu objętości pojemnika układ próbkowania zakończy pobieranie próbek.

3.5.5 Ustawienia programu

Wybierz submenu Program Settings i naciśnij Enter.

Parametr	Opis
Start Date-time	Wprowadź datę i czas, w którym ma zacząć się próbkowanie. (00-
	00 = wyłączone)
Stop Date-time	Wprowadź datę i czas, w którym ma zakończyć się próbkowanie.
	(00-00 = wyłączone)
Stop after full containers	Wprowadź ilość butelek, która ma zostać napełniona. Po wypełnieniu programy sterownik zatrzyma próbkowanie, które zostanie wznowione po naciśnieciu przycisku Reset .
Date time.	Wprowadź aktualny czas i datę.
Password	Pozwala na zmianę hasła (format 1-9999).

Po wybraniu odpowiedniego parametru naciśnij Enter by zmienić jego wartość.

3.5.6 Ustawienia wejść i wyjść

Wybierz submenu Input/output Settings i naciśnij Enter.

Po wybraniu odpowiedniego parametru naciśnij Enter by zmienić jego wartość.

Parametr	Opis	
Flow signal	Za pomocą ◀ lub ► wybierz rodzaj impulsu:	
	Pulse = wejście impulsowe dla licznika (>50ms).	
	Current = wejśćie 4-20mA dla licznika	
	Pulse+Current = wejście ipulsowe dla licznika, wartość prądu jedynie	
	wyświetlana	
Pulse input value	Wprowadź wartość impulsu, 0,01-100,00m3.	
Current Value	Zaprogramuj wejście prądowe, wprowadzając wartość przepływu dl	
	20mA (max 260m3/h)	
Input 1 config	Za pomocą < lub 🕨 zaprogramuj wejścia.	
Input 2 config	Start/Stop programu, Start Program, Stop program, Weź próbkę,	
	Następna butelka, Włącz chłodziarkę, Urządzenie wyłączone	
Output 1 config	Za pomocą < lub 🕨 zaprogramuj wyjścia.	
Output 2 config	Alarm, Alarm próbki, Wysoka temperatura, Próbkowanie, Próbka OK,	
	Błąd próbki, impuls co 1m3, impuls co 0,1 m, 0,01 m3/impuls, Pełna	
	butelka.	

3.5.7 Ustawienia chłodziarki

Wybierz submenu Cool unit Settings i naciśnij Enter.

Parametr	Opis
Cool Unit On/Off	Włącz / wyłącz.
Defrost cycle	Wprowadź okres (F) co jaki chłodziarka ma się odmrażać. Oraz czas
	odmrażania (t).
Temperat. offset	Wprowadź korektę temperatury. W jakim zakresie może ona odbiegać od
	zaprogramowanej temperatury.
Defrost Time	Wprowadź godzinę o której chłodziarka ma się wyłączyć. Ustaw 0 by
	aktywować chłodziarkę.
ECO cool	Nie dostępne

Po wybraniu odpowiedniego parametru naciśnij Enter by zmienić jego wartość.

4 Próbnik próżniowy

4.1 Specyfikacja techniczna

Próbnik zgodny z ISO 5667-2&10 oraz NEN 6600-1				
Próbka	Zasysanie próżniowe			
• Max. wysokość	•4 m (opcjonalnie 6m)			
zasysania				
• Min. prędkość zasysania	• 0,5 m/sek			
• Pompa powietrza	• 24 VDC dwukierunkowy 🗆 2800 rpm			
 Zawór spustowy 	• 24 VDC dwukierunkowy 🗆 30 Nm			
 Objętość próbki 	• 20 ml do 250 ml			
 Powtarzalność 	•2% (przy 50 ml i więcej)			
 Dokładność dawki 	•4% (przy 50 ml i więcej)			
 Temperatura medium 	• max 50 \square C (wyższa na życzenie)			
 Max. częstotliwość 	• 1 próbka / 2 minuty (blokada			
próbki	systemowa)			
 Średnica wężyka 	•16 mm (minimum 12mm) wewnątrz			
zasysającego				
 Połączenie wężyka 	• 3/4"			
zasysającego				
 Materiał komory 	• Poliwęglan			
próżniowej				
 Ustawienia próbki 	• Regulowane oczyszczanie, przerwa			

4.2 Wymiary i budowa

Podzespoły próżniowego próbnika (dozownika) są umiejscowione w komorze chłodniczej, za wyjątkiem pompy powietrza, która znajduje się w komorze sterowania.

- A) złącze wężyka zasysania
- B) głowica dozownika próżniowego
- C) nakrętka naczynia szklanego
- D) próżniowe naczynie szklane
- E) elektrody

zasysania, czas dawki

- F) rurka dozująca
- G) zawór spustowy
- H) śruba blokująca zaworu spustowego
- I) wężyk odpływowy próbki

Rys. 4.2a

4.3 Zasada działania

Cykl próbkowania:

Zamykanie zaworu spustowego, zawór ściska silikonowy wężyk zamykając dozownik od strony wylotu. Oczyszczanie, pompka generuje ciśnienie w dozowniku próbki. Z końca (wlotu) wężyka zasysającego wydostają się bąbelki powietrza, oczyszczając wężyk ssący ze "starych ścieków".

Ssanie, pompka zmieniając kierunek obrotów wytwarza podciśnienie wewnątrz dozownika próbki. Ścieki są zasysane wężykiem ssącym aż osiągnął poziom elektrod. Jeśli ścieki nie dotkną elektrod w zaprogramowanym czasie (domyślnie 30 sek) system próbkowania oznajmi błąd. Po (ustawienie domyślne) 3 błędach próbki system włączy alarm.

Dozowanie, po zetknięciu elektrod z cieczą czujnik poziomu zmienia kierunek obrotu pompy. To powoduje powstanie ciśnienie w dozowniku próbki i wydmuchanie nadmiaru cieczy z powrotem przez wężyk ssący.

Zawór spustowy, zawór otwiera się i próbka zostaje spuszczona do butelki. W celu przyspieszenia zlewania cieczy do butelki uruchamiana jest pompka, która wytwarzając ciśnienie w dozowniku przyśpiesza spływ cieczy do butelki. Czas pracy pompki ustawiany jest w sterowniku. Po spuście próbki cykl jest zakończony. Próbopobierak czeka w ustawionym czasie (minimum 10sek) aż nastąpi następne automatyczne dozowanie.

* Wszystkie próbniki próżniowe mają 1 minutę przerwy pomiędzy każdymi dwoma zebranymi próbkami. Jest to czas, w którym pompka się chłodzi.

4.4 Instrukcje montażu

Postępować zgodnie z instrukcją podczas montażu

- Podłącz wąż ssący do próbnika lub czujnika medium, w przypadku pobieraka z pompą perystaltyczną
- Zamontować końcówkę węża w miejscu pobierania próbek.

Rvs. 4.4a

Zwróć uwagę:

- Maksymalna wysokość zasysania : 6 metrów
- Maksymalna długość zasysania: 20 metrów
- Unikaj syfonów w wężyku ssącym
- Końcówka węża ssącego (otwór dopływowy) powinna być montowana poniżej komory próbkowania oraz skierowana w dół.

Rvs. 4.4b

4.5 Zmiana objętości dozowania

W systemie próżniowym objętość dozowania jest dostosowywana poprzez długość silikonowego wężyka (3) wewnątrz komory próżniowej (4). Im dłuższy wężyk tym mniejsza objętość próbki. Standardowa objętość próbki wynosi ± 50 ml, aby zmienić objętość należy postępować zgodnie z poniższą instrukcją:

Rys. 4.5a • Odł

- Odłączyć zasilanie
 - Ostrożnie poluzować uchwyt szklanego pojemnika (2) zgodnie z ruchem wskazówek zegara aż szkło (4) będzie poluzowane z czoła próżniowego
 - W razie potrzeby usunąć białą śrubę zaworu spustowego aby uzyskać więcej miejsca
 - Określić długość wężyka silikonowego (3) (wydłużyć lub skrócić). Patrz poniższa tabela.
 - Ponownie zamontować części i podłączyć zasilanie

4.6 Konserwacja próbnika próżniowego

7

Uwaga! Przed konserwacją lub sprawdzeniem wyłączyć zasilanie, doprowadzenie skompresowanego powietrza i usunąć ciśnienie medium.

Konserwacja i naprawy powinny być wykonane przez wykwalifikowany personel.

Unikać bezpośredniego kontaktu z ściekami. Należy używać rękawic ochronnych.

Podczas usuwania odpływu wężyka z siłownika pojawia się zagrożenie dla palców dotykających siłownika – to może powodować poważne obrażenia.

Punkty wymagające uwagi

- Wyczyścić wnętrze komory próżniowej.
- Sprawdzić czy silikonowy wężyk próbki jest nienaruszony, w razie potrzeby wymienić
- Regularnie sprawdzać czy wężyk zasysający jest czysty i nienaruszony, w razie potrzeby wymienić.
- Regularnie sprawdzać wydajność pompy powietrza
- Sprawdzić czy zasilanie jest z godne z 24 ± 0.1 VDC

Przegląd strefy podciśnieniowej

Kiedy wydajność pompki spada, filtry znajdujące się wewnątrz pompy muszą zostać wyczyszczone. Należy usunąć pompę z elektronicznej komory, rozluźnić 4 śruby M4 z czoła pompy i zdjąć 2 filtry (B) z czoła pompy. Umyć filtry wodą z kranu i pozostawić do wysuszenia.

Uwaga! Zmontuj pompę z powrotem dokładnie tak jak pokazuje rysunek.

Rys. 4.6a

Wymiana zaworu spustowego

- Odłącz zasilanie
- Poluzuj śrubę (E) od złączki zaworu spustowego (D) używając ręki. Wyjmij białą śrubę (F) która trzyma wąż silikonowy i poluzuj nakrętkę (B) od obudowy (A).
- Zastąp stary zawór nowym zaworem spustowym.
- Umieść uszczelkę (C) oraz złączkę (D) i zamocuj śrubę (E)
- Umieść białą śrubę na swoim miejscu
- Podłącz zasilanie, sprawdź czy zawór spustowy działa poprawnie.

Rvs. 4.6b

4.7 Diagnozowanie

Problem	Diagnoza	Rozwiazanie	
Próbnik nie pobiera	Sprawdź ustawienia	\$3.5	
próbki	Za krótka końcówka wężyka	Zobacz instrukcje montażu (§4.3)	
	ssącego		
	Uchwyt szklanego pojemnika	Docisnąć uchwyt szklanego pojemnika	
	poluzowany		
	Ujście powietrza ze złącza wężyka	Docisnąć/ wymienić złącze wężyka	
	ssącego	ssącego/ wymienić o-ring	
	Brak odpowiedniej mocy w	Sprawdzić filtry i łopatki wirnika (§4.6)	
	pompce		
	Zawór spustowy w pełni nie	Wyreguluj zasilanie potometru na 24 ±	
	zaciska wężyka silikonowego	0,10 VDC.	
	Zbyt duża częstotliwość impulsów	Max. częstotliwość impulsów: < 1	
		impuls / sekunda	
Pompa powietrza obraca się	Łopatki wirnika wewnątrz pompy	Wymienić wirnik pompki	
ale nie dmucha powietrza	są złamane	(§4.6)	
Próbnik pomija	Zanieczyszczone elektrody	Wyczyścić elektrody	
zasysanie	wewnątrz komory próbkowania		
Mała objętość	Zła regulacja objętości dozowania	Wydłużyć wężyk silikonowy (§4.5)	
dozowania			
	Medium przedostaje się do	Skontaktuj się z dostawcą	
	komory próbkowania za szybko??		

Próbnik perystaltyczny 5

Specyfikacja techniczna 5.1

Pomna pervstaltyczna				
Próbka	Przewód			
• Czas cyklu	• ± 32 sek + czas płukania			
Materiał obudowy	• POM			
Materiał przewodu	• Norprene©			
Wymiar przewodu	• 9,5 x 2.4			
Temperatura ścieków	• max.50 C (wyższa na życzenie)			
• Max. ciśnienie medium	• 5 m H ₂ O			
 Max. wysokość ssania 	• 5 m H ₂ O			
 Prędkość ssania 	 0,6m/s przy 4m wysokości 			
 Żywotność przewodu 	• 200 godzin (około 1 rok przy pobieraniu 24			
 Wąż ssący 	próbek na dzień), zależnie od medium			
	 standardowo 5m 			
Pompa perystaltyczna	Elektryka			
Zasilanie	• 24 VDC			
 Natężenie prądu 	• 1,5A			
Cykl pracy	• 35% przy 20□ C			
• Max. moment	• 20 Nm m 25 Nm			
• Złącza	Molex 2 biegunowe			

5.2 Wymiary i budowa

- A) Korpus pompy
- B) Złącze szybkomocujące
- D) Przewód dopływowyD) Przewód odpływowy
- E) Czujnik medium
- F) Złączka przewodu dopływowego
- G) Złączka węża ssącego
- H) Wlot węża ssącego

I

5.3

- Oczyszczanie: Przed pobraniem próbki następuje oczyszczenie węża ssącego przez określony czas (parametr PurgeT[OCZYSZCZ]T, ustawienie domyślne = 10 sekund). W ten sposób wąż ssący zostaje oczyszczony z poprzedniego medium, które usuwane jest przewodem dopływowym.
- 2) Ssanie: W przewodzie dopływowym wytwarzane jest ciśnienie do momentu kiedy medium nie dostanie się do czujnika (A Rys.8.3). Jeśli próbopobierak nie wykryje medium w ustalonym czasie (parametr Suction [SSANIE], wartość domyślna = 30 sekund) traktuje to jako błąd próbki.
- 3) **Dozowanie**: Po wykryciu medium, próbnik dozuje medium w ustalonym czasie (parametr Dose [DOZOW], wartość domyślna = 6 sekund)
- 4) **Oczyszczanie**: Kiedy dozowanie próbki zostaje zakończone, w przewodzie dopływowym pompa wytwarza ciśnienie aby usunąć nadmiar wody z przewodu wewnątrz pompy i węża ssącego w ustalonym czasie (parametr RinseT [OCZYSZCZANIE], wartość domyślna = 10 sekund)

5.4 Instrukcje montażu

Postępować zgodnie z instrukcją podczas montażu

- Podłącz wąż ssący do dostarczonej złączki.
- Podłącz złączkę do czujnika medium.
- Wprowadź wąż przed otwór wlotowy i ciasno dokręć dławik.
- Upewnij się, że wąż ssący jest zawsze zanurzony w medium.

Zwróć uwagę:

- Maksymalna wysokość ssania: 8 metrów
- Maksymalna długość ssania: 30 metrów

5.5 Zmiana objętości dozowania

Aby zmienić objętość dozowania, zmień czas dozowania za pomocą parametru DoseT [DOZOW]. Wydłużając czas dozowania, zwiększa się objętość. Przykładowo ustawienie czasu dozowania na 18 sekund umożliwia pobranie próbki o objętości 900 ml.

Uwaga: Zmiana długości węża ssącego bądź jego średnicę zmieni prędkość ssania co również zmienia objętość dozowania

5.6 Konserwacja

Uwaga! Przed konserwacją lub sprawdzeniem wyłączyć zasilanie, usunąć ciśnienie i medium z rurek ściekowych.

Konserwacja i naprawy powinny być wykonane przez wykwalifikowany personel.

Unikać bezpośredniego kontaktu z ściekami. Należy używać rękawic ochronnych.

Uwaga! Podczas usuwania dopływu lub odpływu wężyka z obudowy pojawia się zagrożenie dla palców.

Punkty wymagające uwagi

- Regularnie czyścić wnętrze czujnika medium, instalację rurową oraz złączki (wszystkie mokre części) za pomocą miękkiej szczotki i wody. Czas czyszczenia uzależniony jest od rodzaju pobieranego medium.
- Wymieniać wąż w razie potrzeby
- Sprawdzać stan przewodu wewnątrz pompy, wymienić w razie potrzeby

Wymiana przewodu wewnątrz korpusu pompy

- Poluzuj przewód w czujniku medium i wężu silikonowym
- Zdejmij korpus pompy, wciskając złącze mocujące (B, rys. 9.2a)
- Ręcznie naciskając zatrzaski z boku korpusu pompy, można usunąć pokrywę, żeby dostać się do przewodu.
- Usuń rolki oraz wirnik, żeby dostać się do przewodu
- Usuń zatrzaski przewodu
- Utnij nowy przewód według wymiarów poniżej

Tubing dimensions

- Umieść zatrzaski przewodu zachowując poprawne odstępy między nimi
- Wstaw przewód i rolki wewnątrz korpusu pompy
- Zamknij korpus pompy pokrywą
- Umieść pompę w próbopobieraku
- Podłącz przewód do instalacji
- Pobierz próbkę i sprawdź czy wszystko działa poprawnie

ILS "Guillotine" G05 6

6.1 Specyfikacja techniczna

ILS "Guillotine" 05 zgodne z ISO 5667-2 I 10 oraz NEN 6600-1				
Próbka:				
• Cykl	• ± 5 s całość			
 Części zwilżane 	• RVS 316 V4A, PTFE, Viton, POM, Silikon			
 Tłoczek nurnikowy 	• RVS 316 V4A			
Uszczelnienia	Viton & PTFE			
Temperatura medium	• max 35 C (wyższa na życzenie).			
Ciśnienie maksymalne	• 2 bar (opcjonalnie wyższe)			
 Minimalna średnica 	• 100mm; mniejsza wymaga użycia specjalnego			
rurociągu	uchwytu			
Minimalna średnica	• 14 mm			
 Objętość próbki 	• 50 ml stała objętość (mniejsza na życzenie)			
Siłownik:	Pneumatyczny			
 Zasilanie powietrzem 	• 6-8 bar			
 Stopień ochrony 	• IP 65			
• Obudowa	 Cylinder z twardego anodyzowanego 			
	aluminium			
 Podłączenie powietrza 	 Łączniki dla węża sprężonego powietrza 8mm 			
 Czas aktywacji 	• 5 sec			
Zawór: (opcja)	Zawór z NAMUR 5/2			
• Zasilanie	• 24 VDC ±5% / 0.13A			
 Natężenie prądu 	• 0.13A			
Parametry otoczenia:				
• Temperatura	• $0,1 \square C \div +40 \square C$ (opcjonalnie niższa)			
• ATEX	• Brak			

Wymiary i obudowa 6.2

Rys. 6.2a

- A) Króciec spustowyB) Zaciski Tri-clamp RVS
- C) Odpowietrzenie
- D) Magnes pod zawór 5/2 (Zawór jako opcja)
- E) Zasilanie powietrzem
- F) Obudowa siłownika

- G) Przyłącze powietrza
- H) Obudowa tłoczka SS 316
- I) Tłoczek nurnikowy SS 316
- J) Króciec montażowy z gwintem 2"

6.3 Zasada działania

Cykl próbki przy użyciu próbnika ILS Guillotine:

Rys. 6.3a

6.4 Instrukcja montażu

Postępować zgodnie z instrukcją podczas montażu (rys. 6.4 a):

- Podłączyć w miejscy gdzie rura jest w 100% wypełniona, medium jest wolne od pęcherzy powietrza. Zalecane podłączenie w pozycji horyzontalnej, minimalna prędkość cieczy 0,5 m/s.
- Upewnić się że podłączenie węża silikonowego jest wystarczająco wysoko.
- Nie montować próbnika na zwężkach lub na zakrętach.
- Opróżnić próbnik przed konserwacją bądź naprawą.
- Ne montować próbnika na lub za rurą spustową.
- Maksymalne ciśnienie 2 bar.
- Upewnić się że próbnik, w pozycji wyjściowej, nie dotyka rury.

6.5 Zmiana objętości próbki

W celu zmiany objętości próbki należy wymienić tłoczek nurnikowy. Na zapytanie dostępne są tłoczki o objętości próbki < 50 ml.

6.6 Konserwacja

Uwaga! Przed konserwacją lub sprawdzeniem wyłączyć zasilanie, doprowadzenie skompresowanego powietrza i usunąć ciśnienie medium.

Konserwacja i naprawy powinny być wykonane przez wykwalifikowany personel.

Unikać bezpośredniego kontaktu z ściekami. Należy używać rękawic ochronnych.

Podczas usuwania odpływu wężyka z siłownika pojawia się zagrożenie dla palców dotykających siłownika – to może powodować poważne obrażenia.

Przegląd:

Regularnie (w zależności od częstotliwości poboru próbek) czyścić ,bądź jeśli jest to konieczne wymienić: tłoczek nurnikowy, wylot próbki i wąż spustowy, miękką szczotka i czystą wodą. Regularnie kontrolować stan uszczelnień w razie konieczności wymieniać.

Demontaż:

- Zdjąć pierwszy zacisk i wysunąć próbnik z rury. •
- Zdjąć drugi zacisk i odłączyć obudowę od • siłownika.
- Za pomocą zacisków TRI-Clamp zamontować • zastaw czyszczący ILS.
- Sprężone powietrze podłączyć do zacisku B. Nastapi oczyszczenie tłoczka. (UWAGA NA PALCE!!!).
- Zdemontować zestaw czyszczący oraz ostatni element obudowy.
- Odkręcić nakrętkę blokującą i poluzować tłoczek. •

Weryfikacja:

Wymienić uszczelnienia (rys. 6.6a), 3x Viton duże (4), 1 Viton małe (2) oraz 1 Teflon (1). Poluzować czarną osłonę i wunienić X-ring na osi.

Montaż

Montaż przeprowadzić w kolejności odwrotnej do demontażu. Uszczelki nasmarować.

Problem	Diagnoza	Rozwiązanie
Próbnik nie pobiera próbki	Sprawdź ustawienia	pkt. 3.5
	Brak zasilanie powietrzem	Podłącz sprężone powietrze
	Nieprawidłowe podłączenie	Sprawdź podłączenie (pkt. 6.4)
	Przeciek powietrza w cylindrze	Wymień cylinder
Mała objętość dozowania	Zanieczyszczenie próbnika	Wyczyścić próbnik (pkt. 6.6)
	Pobór próbki na spływie	Zobacz instrukcje montażu (pkt. 6.3)
Próbnik pracuje ale nie pobiera próbki	Tłoczek zatkany brudem	Wyczyścić próbnik (pkt. 6.6)
	Zatkany wylot spustowy	Wyczyścić wylot (pkt. 6.6)
Przeciek z próbnika	Przeciek/Uszkodzone uszczelnienie	Wymienić uszczelnienia (pkt. 6.6)
Próbka upuszczana podczas	Źle podłączone powietrze	Zamienić podłączenia na cylindrze.
poboru		

6.7 **Diagnozowanie usterek**

Załacznik 1

Załacznik 2

Przykłady

1. Ustawienie poboru ilości próbek do jednego pojemnika

W celu ustawienia określonej ilość próbek do pojemnika należy posłużyć się parametrem "Overflow protect". Parametr ten zabezpiecza przepełnienie danego pojemnika. Aby poprawnie skonfigurować próbkowanie należy:

- 1) Klawiszem ← wchodzimy do MENU -> hasło 5555 -> Sample settings -> klawiszem ▼ przechodzimy do parametru "Sample volume"
- 2) Parametr ten definiuje jaką objętość próbki chcemy pobrać. Tak więc jeżeli chcemy pobrać 3 próbki do pojemnika który ma objętość 11 (1000ml) musimy parametr ten ustawić na 333,33ml. W przypadku, gdy chcemy pobrać 4 próbki ustawiamy 250ml itd. Tak więc objętość ta wynika z podziału objętości pojemnika na ilość próbek, które chcemy pobrać do pojemnika.
- 3) Po ustawieniu objętości naciskamy "ESC" przechodzimy poziom wyżej. Następnie ►aby przejść do "Distributor Settings". Naciskamy ▼ aż dotrzemy do parametru "Overflow protect". Naciskamy ENTER. Mamy możliwość wybrania, co próbkowanie zrobi gdy przekroczona zostanie objętość pojemnika. W zależności od tego co chcemy osiągnąć wybieramy: NEXT CONTAINER po przekroczeniu objętości pojemnika dystrybutor przejdzie do następnej próbki / STOP SAMPLING po przekroczeniu objętości pojemnika układ próbkowania zakończy pobieranie próbek.

2. Pobieranie próbek co xx minut bądź xx m3.

W celu ustawienia pobierania próbek co określony czas należy:

1) Klawiszem ← wchodzimy do MENU -> hasło 5555 -> Sample settings -> klawiszem ▼ przechodzimy do parametru "Sample by"

Jeżeli strzałką ► ustawimy "Volume interval" próbkowanie będzie pobierać próbkę co xx m3 przepłyniętego medium w rurociągu na którym dokonujemy pomiaru. Należy jednak pamiętać, że objętość mierzona jest przez zewnętrzne urządzenie, które podłączone jest do układu próbkowania poprzez Impulsy lub wejście prądowe (patrz rozdział "Changing Input/Output Settings". Ustawienie objętości po naciśnięciu klawisza V Na ekranie wyświetlać się będzie "xxx.xx m3 or min". W tym miejscu automatycznie w zależności od wybranego sposobu próbkowania ustawiamy czas bądź objętość w m3

2) Jeżeli strzałką ► ustawimy "Time interval" próbkowanie będzie pobierać próbkę co xx minut.

Aby ustawić czas należy nacisnąć ▼ i następnie wpisać wartość odstępu czasowego. Na ekranie wyświetlać się będzie "xxx.xx m3 or min". W tym miejscu automatycznie w zależności od wybranego sposobu próbkowania ustawiamy czas bądź objętość w m3.

3) Jeżeli strzałką ► ustawimy "Batch" próbkowanie będzie pobierać próbkę co xx minut, ale tylko gdy aktywne będzie wejście impulsowe.

Aby ustawić czas należy nacisnąć ▼ i następnie wpisać wartość odstępu czasowego. Na ekranie wyświetlać się będzie "xxx.xx m3 or min". W tym miejscu automatycznie w zależności od wybranego sposobu próbkowania ustawiamy czas bądź objętość w m3.

Wybór czasu przestawiania dystrybutora do następnego pojemnika.

W celu ustawienia czasu, w którym próbkowanie będzie przestawiać dystrybutor do następnego pojemnika należy posłużyć się parametrem "Turn Time" w menu "Distributor Settings".

- 1) Klawiszem ← wchodzimy do MENU -> hasło 5555 -> Sample settings -> klawiszem ▼ przechodzimy do parametru "Distributor settings"
- Strzałką ▼ przechodzimy do "Turn Time". Tutaj możemy wpisać czas w formacie hh:mm. Gdy wprowadzimy np.: 13:45, to o tej godzinie nastąpi przestawienie dystrybutora nad następny pojemnik.
- 3) Poniżej mamy możliwość wpisania "Turn Day" czyli dni tygodnia, w których będzie następować zmiana pojemnika (zgodnie z czasem "Turn time".
- 4) Parametr "Trun Interval" definiuje co ile dystrybutor ma się przemieszczać do następnego pojemnika. Gdy ustawimy wartość "O" dystrybutor przemieści się tylko zgodnie z czasem "Turn Time". Gdy wprowadzimy wartość np.: "1" dystrybutor będzie się przemieszczał o godzinie zgodnej z "Turn Time", a następnie co 1 godzinę od tego czasu.

3 Ustawienie czasu próbkowania w konkretnych godzinach.

Aby próbkowanie pobierało próbki w danym przedziale czasowym należy posłużyć się parametrem "Start Date-time" oraz "Stop Date-time" w menu "Program Settings".

- 1) Klawiszem ← wchodzimy do MENU -> hasło 5555 -> Sample settings -> klawiszem ▼ przechodzimy do parametru "Program settings"
- 2) Strzałką ▼ przechodzimy do "Start Date-time" tutaj ustawiamy czas startu programu.
- 3) Strzałką ▼ przechodzimy do "Stop Date-time" tutaj ustawiamy czas zatrzymania programu.
- 4) Gdy ustawimy godzinę startu oraz stopu programu w formacie "hh:mm" próbkowanie rozpocznie oraz zakończy zgodnie z tym przedziałem czasowym pobór próbek.
- 5) W zadanym przedziale czasowym będzie pobierać próbki zgodnie z wybranym sposobem poboru próbek "Samble by", bądź gdy zostanie podany sygnał z zewnątrz.

ENKO-POMIAR Sp. z o.o. 44-109 Gliwice, ul. Metalowców 6 Adres do korespondencji:44-101 Gliwice, ul. Dojazdowa 10 Tel. +48 32 232 01 52, fax +48 32 235 62 37 www.enkopomiar.pl <u>biuro@enkopomiar.pl</u> <u>serwis@enkopomiar.pl</u>